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Abstract. A Chebyshev quadrature is of the form 

rl ~~~~~n 
j w (x) f(x)dx ~ C 

E f(xk)- 
-1 ~~~~k=1 

It is usually desirable that the nodes Xk be in the interval of integration and that the 
quadrature be exact for as many monomials as possible (i.e., the first n + 1 mono- 
mials). For n = 1, *I , 7 and 9, such a choice of nodes is possible, but for n = 8 
and n > 9, the nodes are complex. In this note, the idea used is that the 12-norm of 
the deviations of the first n + 1 monomials from their moments be a minimum. 
Numerical calculations are carried out for n = 8, 10, and 11 and one interesting 
feature of the numerical results is that a "multiple" node at the origin is required. 
The above idea is then generalized to a minimization of the 12-norm of the deviations 
of the first k monomials, k ? n + 1, including k = oo, and corresponding numerical 
results are presented. M 

1. Introduction. A Chebyshev quadrature is of the form 

(1 n 

(1) J_ w(x)f(x)dx __ C E f(xk). 

There are several advantages in having a constant weight c, one of which is the 
following [2, p. 71]: Suppose that numerical errors are made in evaluating the point 
functional f(Xk) and that these errors are normally distributed with a common 
variance. If a quadrature of the form 

(1 n 
]_ w(x)f(x)dx > EAkf(xk) k~l 

is exact for the function 1, i.e., 

al ~~~n 
j_ w(x)dx= EAk, 

k=1 

then the standard deviation of the error in the quadrature sum due to the above 
cause is minimized by taking all the Ak to be equal, i.e., 

Ak= If w(x)dx, k= 1, ,n. 

It is desirable for most purposes that the quadrature nodes Xk be in the interval 
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[-1, 1]. Since there are n nodes and one weight, any n + 1 functions that form a 
Chebyshev set can be integrated exactly. Conventionally, these are taken to be the 
first n + 1 monomials 1, x, ., Xn. For n = 1, ***, 7, and 9, there exist Chebyshev 
quadratures with nodes in [-1, 1] that integrate the first n + 1 monomials exactly. 
For n = 8 and n > 9, the first n + 1 monomials can be integrated exactly, but some 
of the nodes are complex. 

With this as background, there are various alternatives that can be pursued. 
One of these is to maintain the requirement of a constant weight and the nodes being 
in [-1, 1] and to find the highest algebraic degree of precision m = m(n). This 
possibility has been explored and references to its literature are given in the paper 
by Meir and Sharma [3]. 

A different approach is used in Section 2 of this paper. We consider w(x) = 1, 
c = 2/n, and the nodes constrained to be in [-1, 1]. We formulate the problem as 
follows: find a quadrature of the form 

2n 
2E f(xk) 

so that 

?1. 2 n j 2 

(2) 57 XnkE i_ 

is a minimum, where mj = 7 xidx is the jth moment. That is, we want to minimize 
the 12-norm of the "deviations" of the first n + 1 monomials from their moments. 

2. Three New Quadratures. This problem has been solved numerically for the 
cases n = 8, 10, and 11. The solutions for these cases were found by the application 
of a generalized Newton's method. Under certain conditions, the Newton iterates 
converge to a minimum of (2). These conditions are given in the article by Ben- 
Israel [1]. The computer programs were checked by calculating the classical weights 
and nodes for n = 6, 7 and 9. Symmetry was assumed for all cases** and so only 
nonnegative values need be considered. The cases n = 8, 10, and 11 have the in- 
teresting common property that if only positive nodes were used in the initial 
approximations, then convergence was not obtained either with the generalized 
Newton's method or with the gradient methods used. That is, for n = 8 and 10, a 
double node at zero and, for n = 11, a triple node at zero, were required for con- 
vergence. 

For n = 8, the results are the following: 
(The nodes are labelled from left to right in [- 1, 1].) 

-xi = x8 = 0.90044 55323, 

-X2 = X7 = 0.55898 89280, 

-X3 =X6 = 0.45850 78272, 

-X4 X5 = 0.0 . 

** For n = 8, the same results were unchanged (to at least seven decimals) if symmetry was 
not assumed and, also, if c was not assumed to be 2/n. 
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The minimum of (2) for n = 8 is 0.79221 X 10-6 and the corresponding approxima- 
tions to the moments are the following: 

I 8 2 
I Exi2 = 0.66675vs. 2/3, 

' 8 

E Zxi4 = 0.39962 vs. 2/5, 
i=1 

+ 8 

E xs = 0.28641 vs. 2/7, 

+ 8 
E x i = 0.22183 vs. 2/9. 

These results were found after four iterations of the generalized Newton's method, 
with the initial approximation (.9015, .568, .468, 0.0). The calculation was ter- 
minated when there was no change in the first twelve digits in the nodes. This initial 
approximation was found by an interpolation at n = 8 on the graph of n vs. the 
classical Chebyshev nodes, with the alteration that 0.0 was included, according to 
the above remarks. The initial approximations for n = 10 and 11 were found by an 
extrapolation from the same graph. 

The numerical results for n= 10 and 11 are the following: 

n 10 
-x= xio = .921.06 80558, 
-X2 = X9 = .63181 13569, 
-x3= x = .58191 74110, 
-X4 =7 = .38366 17341, 

X5 =X6 = 0-0. 

The minimum of (2) for n = 10 is 0.30362 X 10-6. 

n = 11, 

-xi = xi, = .92676 50132, 
-2 = X10= .70492 41194, 
-X3-= = .51792 29707, 
-X4 = X8 = .45740 29197, 

-X5 = X6 = X7 = 0.0. 

The minimum of (2) for n = 11 is 0.34535 X 10-6. 
It has been numerically verified that the reported numbers are local minima 

of (2). Also the surface corresponding to (2) of which the minimum was sought is 
fairly "flat" in that (2) is not very sensitive to "large" changes in the values of the 
nodes. 

3. Generalizations. The above approach may be generalized to a minimization 
of the 12-norm of the deviations of the first k monomials rather than the first n + 1 
monomials, k > n + 1. The case k = so, with no constraints on the weights or 
nodes, has been considered by Wilf [7]. With k = co, the weight constrained to be 
2/n, and the nodes symmetric, the following equations must be satisfied: 
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4 [n/2] 
XjXi 1 1 - Z - ______ 

- 
+tanh-' 

(3) ~n i= (1-Xj 2Xi2)2 Xj(1 Xj2) xj2 

+1 2j 

= 1-l (1-X 22 2dx j= 1, ***,[n/2], 

i.e. we require precision for the functions 

2 
xjx j-1, -em, [n/2]- 

(1 -x2jx2) 

Equation (3) cannot be derived by a specialization of Wilf's results. A similar case 
has been discussed by Valentin [6, p. 43]. It should also be noted that the case k = oo 

corresponds to a Chebyshev type of minimum norm quadrature [5, 8]. The gen- 
eralized Newton's method was applied to the case n = 8. With the initial approxi- 
mation (.9, .6, 0.0, 0.0), the following solution to (3) was obtained: 

n = 8, k = oo , 

-xi = x8 = .91969 65709, 
-X2 = X7 = .61378 64317, 
-X3 = X6 = 0.0, 

-X4 = X5 = 0.0. 

Finite values of k were also considered. The following table gives those results: 

k 10 12 20 

-xi = x8 = .88693 15744 .89369 70519 .90567 80702 
-X2 = X7 = .69671 20629 .68175 22473 .65104 95793 
-X3 = X6 = .0 .0 .0 

-X4 = X = .0 .0 .0 

Min. .222382 X 1-2 .277134 X 10-2 .540009 X 10-2 

k 80 160 200 

-xi = x8 = .91953 06124 .91969 63374 .91969 65409 
-X2 = X7 = .61421 71082 .61378 67665 .61378 62383 
-X3 = X6 = .0 .0 .0 

-X4 = X5 = .0 .0 .0 

AMin. .359082 X 10-1 .452538 X 10-1 .476983 X 10-1 

For both finite and infinite values of k, numerous initial approximations with 
nonzero nodes were used. In each of these cases, the corresponding generalized 
Newton sequence diverged. It appears from Eq. (3) that the trouble arose from some 
of the nodes being near zero. 
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